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On new transcendents defined by nonlinear ordinary
differential equations
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Shosse, Moscow 115409, Russia
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Abstract. The general solution for one of the fourth-order equations is shown to lead to the
new transcendent defined by a nonlinear ordinary differential equation.

Fuchs and Poincaré stated the problem of definition of new functions by means of ordinary
differential equations (ODEs), necessarily nonlinear [1]. These ODEs have to have two
important properties: irreducibility of them and uniformization of their solutions. As to
the first property, it means that there exists no transformation, again within a precise class,
reducing any of these equations either to a linear equation or to another order equation.
Consequently, the general solutions of these equations have no explicit expressions, they
are just defined by the equations themselves [1, 2]. The second property corresponds to the
Painlev́e property of an ODE because this property leads to the absence of movable critical
singularities in its general solution.

The second-order ODE class was studied by Painlevé and his school. They began a study
of these ODEs almost a century ago. It is likely they had two related objectives: to classify
the second-order equations (of a certain form) on the basis of their possible singularities,
and to identity equations of second order that define essentially new functions. Their work
seems to stand as one of the noteworthy successes of 20th century mathematics. They
showed that (up to transformations) there are exactly six second-order equations that define
new functions. The functions defined by them are now called the six Painlevé transcendents.
Later, Bureau extended Painlevé’s first objective, and gave a partial classification of third-
order equations [3–5]. The results of Painlevé and his collaborators led to the problem
of finding other new functions that could be defined by nonlinear ODEs like the Painlevé
transcendents. However, despite huge efforts, no new function has yet been found. In fact,
no irreducible equation has been discovered since 1906 [1].

Although the Painlev́e equations were first discovered from strictly mathematical
considerations, they have recently appeared in several physical applications [6].

In this letter we are going to show that the general solution for one fourth order
equation introduced in [7] gives a new function defined by nonlinear ODEs like the Painlevé
transcendents.

In recent work [7] a hierarchy was introduced that takes the form

dn+1 (u)− z
2
= 0 (n = 1, 2, . . .) (1)
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where the operatordn is determined by the formula

d

dz
dn+1(u) = dnzzz + 4udnz + 2uzd

n

d0 = 1

2
d1 = u. (2)

We have the first Painlevé equation

uzz + 3u2− z
2
= 0 (3)

from equations (1) atn = 1.
If we taken = 2 in equations (1) we obtain the fourth order equation in the form

uzzzz + 5u2
z + 10uuzz + 10u3− z

2
= 0. (4)

It is well known that equation (3) determines a new function which is the Painlevé
transcendent. However, there is a question about what functions are determined by
equation (1) atn > 2.

To answer this question it is necessary first to check the Painlevé property for
equations (1) and second to show that the general solutions of these equations are the
essentially transcendental functions of their initial conditions [8].

Recently [9], we have studied some properties of equations (1) and now we can affirm
that these equations possess the Painlevé property because of the following reasons.

First, these equations were obtained as reductions of nonlinear partial differential
equations which were solved by inverse scattering transform. Following the famous
conjecture of Ablowitzet al [10, 11] we can expect that equations (1) have to have the
Painlev́e property.

Second, using the algorithm of Conteet al [12] we checked equation (4) by the Painlevé
test which is the necessary condition for integrability of this equation. It turned out that
equation (4) passes the Painlevé test.

We also found the Lax pairs for equations (1), which give the possibility to solve
these equations. It is known [1] that a ‘good’ Lax pair is the sufficiency condition for the
integrability of the equation. As this takes place the application of the Gelfand–Levitan–
Marchenko integral equation gives the algorithm for solving the Caushy problem and strict
proof of the Painlev́e property for nonlinear equations. We obtained the Lax pairs that have
the same form for all equations of hierarchy (1). These Lax pairs are ‘good’ because one
of them was used for the solution of equation (3).

Taking into account the above-mentioned reasons, one can see that the Painlevé property
(or property of uniformization) for the solutions of hierarchy (1) is confirmed.

Now the solution of the problem of finding new functions determined by nonlinear
ordinary differential equations (1) reduces to the investigation of the functional dependence
upon the general solutions from the initial conditions.

Three different cases are possible [8]. In the first case, the general solution of the
equation can have the rational or algebraic function of arbitrary constants. This case cannot
lead to the new function. In the second case, the general solution does not have any rational
dependence on initial conditions but the equation can have some integral. In this case some
arbitrary constants can enter in algebraic form of the integral. This case leads to the semi-
transcendental function of the general solution and also does not give any new function. In
the third case, the dependence of the general solution of the equation on the initial conditions
is such that it differs from the first and second cases. Concerning solutions of this case, one
can say, this one is the essentially transcendental function.
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Let us consider dependent solutions of (1) on their initial conditions, taking into account
the above-listed cases. We have the following theorem.

Theorem. The general solutions of equations (1) atn = 1 andn = 2 are the essentially
transcendental functions with respect to constants of integration.

Proof. We are going to prove this theorem atn = 1 andn = 2 because the cases at other
n are proved by this analogy.

Equation (3) was studied by Painlevé who found that the general solution of this equation
gives a new function. He used the variables [8]

u = µ−2u′ z = µz′ (5)

whereµ is some parameter, and transformed equation (4) into the following equation

uzz + 3u2− µ
5

2
z = 0 (6)

(the primes of the variables are omitted). Assumingµ = 0 in equation (6), one can see this
equation has a general solution in the form of an elliptic Jacobi function. This solution has
no rational dependence on the initial conditions. Therefore, the general solution of (6) at
µ 6= 0 also has no rational dependence on arbitrary constants [8].

In a similar manner, (1) can be presented in the form

dn+1(u)− µ
(2n+3)z

2
= 0 (7)

if we use variables (5).
It is easy to see that (7) are transformed to the stationary KdV hierarchy atµ = 0. As

an example, we have the equation

uzzzz + 5u2
z + 10uuzz + 10u3− µ

7

2
z = 0 (8)

from (7) atn = 2 which corresponds to the stationary KdV equation of fifth order

uzzzz + 5u2
z + 10uuzz + 10u3 = 0 (9)

in the caseµ = 0. The solution of (9) was studied in detail by Dubrovin [13]. He found that
the solution of (9) can be expressed by the theta function on the Riemann surface [13–15]:

u = d2

dz2
ln θ(az+ z0) (10)

where θ(z) is the theta function on the Riemann surface,a is the vector of periods of
some normalized differential,z0 is the arbitrary two-dimensional vector [13]. Solution (10)
of equation (9) is the transcendental function with respect to their arbitrary constants [13]
and consequently the solution of equation (8) has no rational dependence on the arbitrary
constants atµ 6= 0 too. We obtain that the general solution of equation (4) does not
correspond to the first case.

Let us show that equation (1) does not have any integral atn = 1. In fact, this theorem
has been proved [8, 16] but we want to use another approach here so that one can apply this
approach to the proof at other valuesn for equations (1). Let us assume that (1) atn = 1
has an integral in the form

P1(u, uz, z) = C1 (11)
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whereC1 is an arbitrary constant andP1 is some polynomial ofu, uz andz. Equation (11)
leads to the following equation

E1 = ∂P1

∂z
+ ∂P1

∂u
uz + ∂P1

∂uz
uzz = 0 (12)

which corresponds to equation (3) so that we have the equality

E1 = Q1

(
uzz + 3u2− z

2

)
(13)

whereQ1 can depend onu, uz andz too.
One can find the equality

∂P1

∂uz
= Q1 (14)

from equation (13), so therefore equation (13) can be written in the form

∂P1

∂z
+ ∂P1

∂u
uz −

(
3u2− z

2

) ∂P1

∂uz
= 0 (15)

Let us look for the solution of equation (15) in the form [8, 16].

P1 = umz + q1(u, z)m
m−1
z + · · · + qm−1uz + qm(u, z). (16)

Substituting (16) into (15) and equating the expressions of the same powers ofuz to
zero gives the following set of equations:

∂q1

∂u
= 0 (17)

∂q2

∂u
+ ∂q1

∂z
− 3mu2+ 1

2
mz = 0 (18)

∂q3

∂u
+ ∂q2

∂z
− 3(m− 1)u2q1+ 1

2
(m− 1)zq1 = 0 (19)

∂qk+1

∂u
+ ∂qk
∂z
− 3(m− k + 1)u2qk−1+ 1

2
(m− k + 1)zqk+1 = 0 (k = 3, . . . , m− 1)

(20)
∂qm

∂z
− 3u2qm−1+ 1

2
zqm−1 = 0. (21)

These equations can be solved sequentially except for equation (21). We have

q1 = f1(z) (22)

from equation (17). Substituting (22) into (18) gives the solution

q2 = mu3−
(

df1

dz
+ 1

2
zm

)
u+ f2(z). (23)

We also obtain from equations (19) and (20)

q3 = (m− 1)f1u
3+ 1

2

(
d2f1

dz2
+ m

2

)
u2−

(
df2

dz
+ 1

2
(m− 1)f1z

)
u+ f3(z) (24)

q4 = 1

2
m(m− 2)u6− 1

2
m(m− 2)zu4− 3

4
(m− 2)u4 df1

dz
+ (m− 2)f2u

3

+1

4
(m− 2)zu2 df1

dz
+ 1

8
m(m− 2)z2u2

−1

6
u3 d3f1

dz3
+ 1

2
u2 d2f1

dz2
− udf3

dz
+ f4 (25)
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and

q5 = 1

2
(m− 1)(m− 3)f1u

6+ 1

4

(
m− 13

5

)
mu5+ 9

20

(
m− 8

3

)
u5 d2f1

dz2

+1

2
(m− 1)(m− 3)f1zu

4− 3

4
(m− 3)u4 df2

dz
+ · · · − 1

2
(m− 3)f3zu

+ 1

24
u4 d4f1

dz4
− 1

6
u3 d3f2

dz3
+ 1

2
u2 d2f3

dz2
− udf4

dz
+ f5. (26)

Solutions (25) and (26) give the form of other solutions of equations (20). In fact,
solutions of these equations can be found fork = 0, . . . , m. However, as this takes place
the solutionsqm andqm−1 have to satisfy equation (21) ifP1 is an integral of equation (4).
One can see this equation is not satisfied.

Let us show this. First, letf1 6= 0, then using the method of mathematical induction
we have

q2k = A3ku
3k + · · · q2k+1 = B3kf1u

3k + · · · (27)

whereA3k andB3k are constants. Substituting (27) into (21) gives a contradiction.
Then letf1 = 0 so taking into account the method of mathematical induction again we

obtain

q2k = A3ku
3k − A3k−2zu

3k−2+ A3k−3f2u
3k−3+ A3k−4z

2u3k−4+ · · · (28)

and

q2k+1 = B3k−1u
3k−1− B3k−2

df2

dz
u3k−2+ · · · (29)

whereA3k, B3k−1 and so on are constants of the same sign. Substitutingqm andqm−1 into
(21) leads to a contradiction in this case too. These contradictions prove the theorem.

Let us note that the integral of equation (6) atµ = 0 can be found. This can be
presented in the form

P1 = u2
z + 2u3 = C1. (30)

Now let us consider equation (1) atn = 2. We assume that there is some integral

P2(u, uz, uzz, uzzz, z) = C2 (31)

of (4), whereC2 is an arbitrary constant andP2 is some polynomial ofu, uz, uzz, uzzz and
z. Equation (31) leads to the following equation

E2 = ∂P2

∂z
+ ∂P2

∂u
uz + ∂P2

∂uz
uzz + ∂P2

∂uzz
uzzz + ∂P2

∂uzzz
uzzzz = 0 (32)

so that we have the equality

E2 = Q2

(
uzzzz + 5u2

z + 10uuzz + 10u3− z
2

)
(33)

whereQ2 can depend onu, uz, uzz, uzzz andz . One can find the equality

∂P2

∂uzzz
= Q2 (34)

from equation (33). Thus equation (33) can be written in the form

∂P2

∂z
+ ∂P2

∂u
uz + ∂P2

∂uz
uzz + ∂P2

∂uzz
uzzz −

(
5u2

z + 10uuzz + 10u3− z
2

) ∂P2

∂uzzz
= 0. (35)
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Let us look for the solutionP2 of equation (35) in the form

P2 = r0umzzz + r1um−1
zzz + · · · + rm−1uzzz + rm (36)

where

rk = rk(u, uz, uzz, z). (37)

Substituting (36) into (35) and equating of the same powersuzzz to zero gives the
following set of equations:

∂r0

∂uzz
= 0 (38)

∂r0

∂z
+ ∂r0
∂u
uz + ∂r0

∂uz
uzz + ∂r1

∂uzz
= 0 (39)

∂r2

∂uzz
+ ∂r1

∂uz
uzz + ∂r1

∂u
uz + ∂r1

∂z
= mr0

(
5u2

z + 10uuzz + 10u3− z
2

)
(40)

∂r3

∂uzz
+ ∂r2

∂uz
uzz + ∂r2

∂u
uz + ∂r2

∂z
= (m− 1)r1

(
5u2

z + 10uuzz + 10u3− z
2

)
(41)

∂rk+1

∂uzz
+ ∂rk

∂uz
uzz + ∂rk

∂u
uz + ∂rk

∂z
− (m− k + 1)rk−1

×
(

5u2
z + 10uuzz + 10u3− z

2

)
(k = 3, . . . , m− 1) (42)

∂rm

∂uz
uzz + ∂rm

∂u
uz + ∂rm

∂z
= rm−1

(
5u2

z + 10uuzz + 10u3− z
2

)
. (43)

These equations can be solved sequentially except for equation (43).
Solution of equation (38) can be presented in the form

r0 = r0(u, uz, z) (44)

One can see that

r1 = −1

2

∂r0

∂uz
u2
zz − b0uzz + f1(u, uz, z) (45)

from equation (39), where

b0 = ∂r0

∂z
+ ∂r0
∂u
uz.

Using solution (45) one can obtain

rm = (−1)m
∂mr0

∂umz
u2m
zz + · · · . (46)

Substituting (46) into (43) leads to the only power 2m+ 1 of uzz. Therefore,

r0 = a0(u, z)u
m
z + a1(u, z)u

m
z + · · · + am(u, z). (47)

However, as this takes place we have from equation (43)

dmb0

dumz
= 0. (48)

In fact one can find the general form of dependencer0 uponu, uz and z in the form
of polynomial taking into account equations (39)–(42) and (48) but one can note thatr0 is
contained inrk as linear expression and without loss of generality let us take

r0 = umz . (49)
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Now one can obtain that

r1 = − 1
2mu

m−1
z u2

zz + f1(u, uz, z). (50)

Taking into account equation (40) we can obtain

r2 = 1

8
m(m− 1)um−2

z u4
zz +

1

2
(10muumz −

∂f1

∂uz
)u2
zz

+uzz
[
mumz

(
5u2

z + 10u3− z
2

)
−
(
∂f1

∂u
uz + ∂f1

∂z

)]
+ f2(u, uz, z). (51)

One can assume that the solution forrk takes the form

rk = aku2k
zz + bku2k−2

zz + cku2k−3
zz + · · · (52)

and one can find the recursion relations from equation (42) forak+1, bk+1 and ck+1 in the
form

ak+1 = − 1

(2k + 2)

∂ak

∂uz
(53)

bk+1 = 1

2k

[
10(m− k + 1)ak−1u− ∂bk

∂uz

]
(54)

ck+1 = 1

(2k − 1)

[
(m− k + 1)ak−1

(
5u2

z + 10u3− z
2

)
− ∂ck

∂uz
−
(
∂bk

∂z
+ uz ∂bk

∂u

)]
. (55)

Assumingk = m− 1 one can obtain the formulae foram, bm andcm from equations (53)–
(55).

Solutionsrm and rm−1, on the other hand, have to satisfy equation (43). Taking this
into account, we have

∂am

∂uz
= 0 (56)

∂bm

∂uz
= 10uam−1 (57)

∂cm

∂uz
+ ∂bm

∂z
+ uz ∂bm

∂u
= am−1

(
5u2

z + 10u3− z
2

)
. (58)

One can see that the coefficientsak are determined by the formula

ak = (−1)k
m(m− 1) . . . (m− k + 1)

2kk!
um−kz (59)

so that we have

am−1 = (−1)m−1 m

2m−1
uz am = (−1)m

1

2m
. (60)

One can also find that

bm = (−1)m−1 m

2m−1
[5uu2

z + g(u, z)] (61)

from equation (57). Substituting (61) into (58) gives

g(u, z) = 5
2u

4− 1
2zu+ p(z) (62)

wherep(z) is a function of integration overu.
Using the method of mathematical induction one can obtain from equation (54) the

coefficientsbk

bk = (−1)k−1m(m− 1) . . . (m− k + 1)

2k−1(k − 1)!
um−kz

[
5uu2

z +
5

2
u4− 1

2
zu+ p(z)

]
. (63)
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We also have

b1 = mum−1
z (5uu2

z + 5
2u

4− 1
2zu+ p(z)) (64)

from equation (63). Taking into account equation (64) we obtain

c2 = −mum−1
z

(
∂p

∂z
− 1

2
u

)
(65)

from (55).
Assuming that

ck = (−1)k−1Aku
m−k+1
z

(
∂p

∂z
− 1

2
u

)
(66)

(whereAk is some constant) leads by the method of mathematical induction to the relation

ck+1 = (−1)kAk+1u
m−k
z

(
∂p

∂z
− 1

2
u

)
(67)

where

Ak+1 = (m− k + 1)

2k − 1

[
Ak + m(m− 1)(m− k)

2k−1(k − 1)!

]
. (68)

One can obtain from equation (67)

cm = (−1)m−1Amuz

(
∂p

∂z
− 1

2
u

)
. (69)

Substituting (60), (61) and (69) into (58) leads to a contradiction because we have(
Am + m

2m−1

)(∂p
∂z
− 1

2
u

)
6= 0. (70)

This contradiction shows that the integral of equation (4) in the form (31) does not
exist. This proves the theorem atn = 2. �

Let us note that equation (8) atµ = 0 has an integral in the form

P2 = uzuzzz − 1
2u

2
zz + 5uu2

z + 5
2u

4 = C2. (71)

Thus we have found that the general solution of (4) does not belong to the second
class as a function of the initial conditions. This indicates that the general solution of (4)
corresponds to the third case.

Thus we have shown that the general solution of (4) is the essentially transcendental
function with respect to the constants of integration.

In the approximate limit, the general solution of this equation can be presented via the
theta function of the Riemann surface which is the semi-transcendental function with respect
to the constants of integration. Consequently, this solution has got no rational dependence
on the constants.

We have shown that equation (4) has no first integral. Consequently, the general
solution of this equation is the essentially transcendental function with respect to the
constants of integration. This solution belongs to the class of functions like the six Painlevé
transcendents.

We believe that every general solution of equations (1) is the transcendents defined
by nonlinear ordinary differential equations too and therefore we have to have an infinite
number of such transcendents. We suppose that these transcendents are new because the
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six Painlev́e transcendents are essentially transcendental functions of two constants but the
general solutions of equation (4) are transcendents of four constants.

Some results of this work were discussed at the seminars in Leeds and Glasgow universities
(September, 1997). I am very grateful to Professors Allan Fordy, Chric Athorne,
V E Kuznetsov and A V Michailov for discussions and comments. I am also thankful
to Robert Conte for useful discussions and for the hand draft of work [1].

This work was supported by the International Science and Technology Centre under
project B23-96. This material is partially based upon supported by the US Civilian Research
and Development Foundation under award No RG2-144.
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